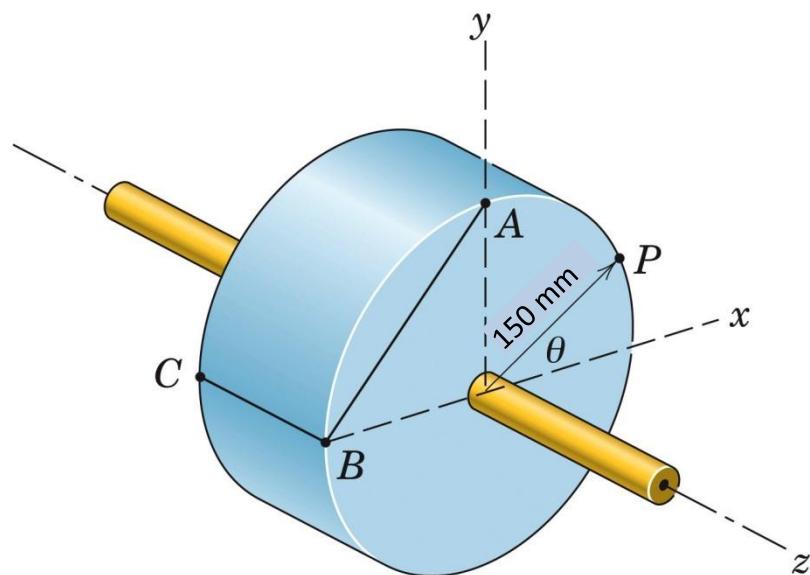


ÇANKAYA UNIVERSITY – MECHANICAL ENGINEERING DEPARTMENT
 ME 204 – DYNAMICS – SPRING 2013
 HOMEWORK 4
 PLANE KINEMATICS OF RIGID BODIES

Due Date: 1st Lecture Hour of Week 11

PROBLEM 5/25

The solid cylinder rotates about its z-axis. At the instant represented, point P on the rim has a velocity whose x-component is -1.28 m/s, and $\theta = 20^\circ$. Determine the angular velocity ω of line AB on the face of the cylinder. Does the element line BC have an angular velocity?



5/25

$$v_x = -1.28 \text{ m/s}$$

$$v = 1.28 / \sin 20^\circ = 3.74 \text{ m/s}$$

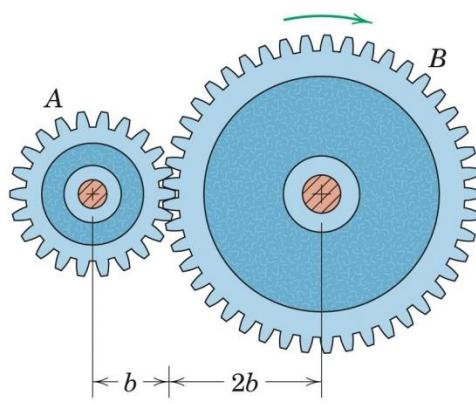
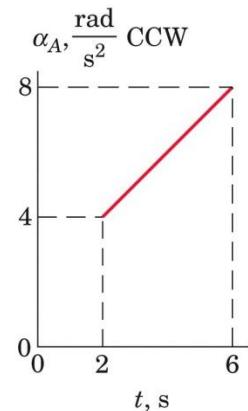
$$\omega = \frac{v}{r} = \frac{3.74}{0.150} = 24.9 \text{ rad/s CCW}$$

$$\underline{\omega} = \underline{\omega}_{AB} = \underline{\omega}_{OP} = 24.9 \text{ rad/s}$$

Element BC remains parallel to z-axis
 so has no angular velocity.

PROBLEM 5/28

The design characteristics of a gear-reduction unit are under review. Gear *B* is rotating clockwise with a speed of 300 rev/min when a torque is applied to gear *A* at time $t = 2$ s to give gear *A* a counterclockwise acceleration α which varies with time for a duration of 4 seconds as shown. Determine the speed N_B of gear *B* when $t = 6$ s.



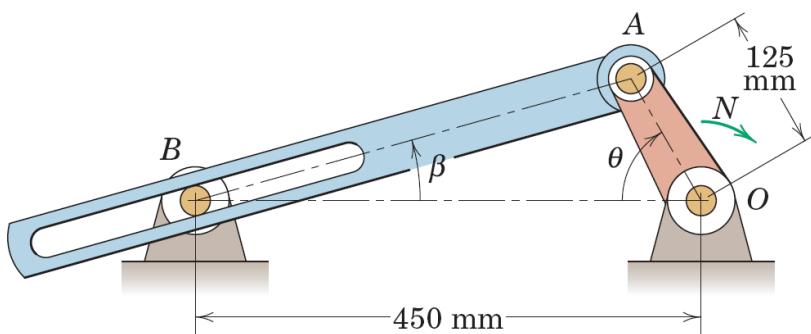
$$\text{For gear } A, \Delta \omega = \int_2^6 \alpha_A dt, \quad N_A = 2N_B$$

$$(N_A - 600) \frac{2\pi}{60} = \frac{4+8}{2} (6-2), \quad N_A = 600 + 229 = 829 \text{ rev/min}$$

$$\text{so at } t=6 \text{ s, } N_B = \frac{829}{2} = \underline{415 \text{ rev/min}}$$

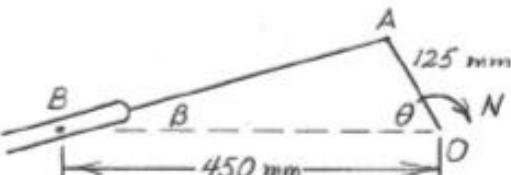
PROBLEM 5/53

Angular oscillation of the slotted link is achieved by the crank OA , which rotates clockwise at the steady speed $N = 120$ rev/min. Determine an expression for the angular velocity $\dot{\beta}$ of the slotted link in terms of θ .



5/53

$$\tan \beta = \frac{125 \sin \theta}{450 - 125 \cos \theta}$$



$$\dot{\theta} = \frac{2\pi N}{60} = \frac{120}{30}\pi = 12.57 \text{ rad/s}$$

$$\sec^2 \beta \dot{\beta} = \frac{(450 - 125 \cos \theta) 125 \dot{\theta} \cos \theta - 125 \sin \theta (125 \dot{\theta} \sin \theta)}{(450 - 125 \cos \theta)^2}$$

$$= \frac{56250 \cos \theta - 15625 \dot{\theta}}{(450 - 125 \cos \theta)^2}$$

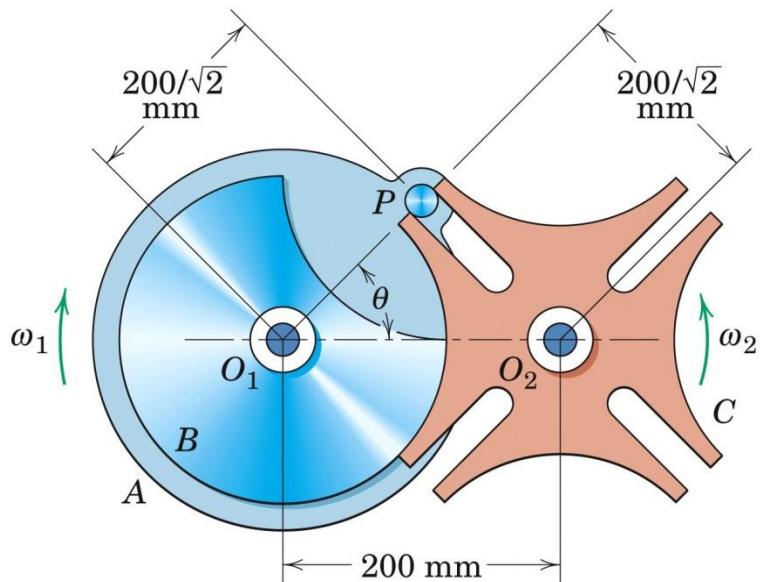
$$\dot{\beta} = \frac{56250 \cos \theta - 15625 \dot{\theta} \cos^2 \beta}{(450 - 125 \cos \theta)^2}$$

$$\text{But } \cos^2 \beta = \frac{(450 - 125 \cos \theta)^2}{450^2 + 125^2 - 2(450)(125) \cos \theta}$$

$$\text{so } \dot{\beta} = \frac{56250 \cos \theta - 15625}{218125 - 112500 \cos \theta} 12.57 \text{ or } \dot{\beta} = \frac{12.57 \cos \theta - 0.278}{2 - 1.939 \cos \theta} \text{ rad/s}$$

PROBLEM 5/56

The Geneva wheel is a mechanism for producing intermittent rotation. Pin P in the integral unit of wheel A and locking plate B engages the radial slots in wheel C , thus turning wheel C one-fourth of a revolution for each revolution of the pin. At the engagement position shown, $\theta = 45^\circ$. For a constant clockwise angular velocity $\omega_1 = 2 \text{ rad/s}$ of wheel A , determine the corresponding counterclockwise angular velocity ω_2 of wheel C for $\theta = 20^\circ$. (Note that the motion during engagement is governed by the geometry of triangle O_1O_2P with changing θ .)



$$\boxed{5/56} \quad \frac{b/\sqrt{2}}{\sin \beta} = \frac{b}{\sin(\pi - \theta - \beta)} = \frac{b}{\sin(\theta + \beta)}$$

$$\text{so } \sqrt{2} \sin \beta = \sin(\theta + \beta) \quad \dots \dots \dots (a)$$

$$\frac{b}{\sqrt{2}} \dot{\beta} \cos \beta = (\dot{\theta} + \dot{\beta}) \cos(\theta + \beta)$$

$$b = 0.2 \text{ m} \quad \omega_2 = -\dot{\beta} = \dot{\theta} \frac{\cos(\theta + \beta)}{\cos(\theta + \beta) - \sqrt{2} \cos \beta} \quad \dots \dots \dots (b)$$

$$\text{From (a)} \quad \sin \beta (\sqrt{2} - \cos \theta) = \sin \theta \cos \beta, \quad \tan \beta = \frac{\sin \theta}{\sqrt{2} - \cos \theta}$$

$$\text{For } \theta = 20^\circ, \quad \beta = \tan^{-1} \frac{0.3420}{\sqrt{2} - 0.9397} = \tan^{-1} 0.7208 = 35.8^\circ$$

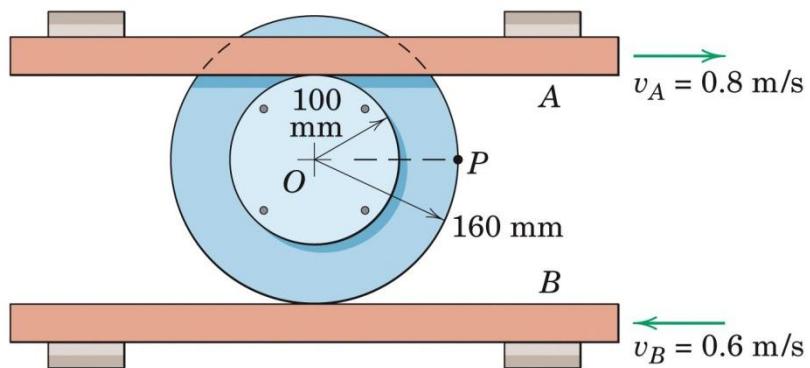
& for $\dot{\theta} = -2 \text{ rad/s}$, Eq. (b) gives

$$\omega_2 = -2 \frac{\cos(20^\circ + 35.8^\circ)}{\cos(20^\circ + 35.8^\circ) - \sqrt{2} \cos 35.8^\circ} = -2 \frac{0.5623}{-0.5849}$$

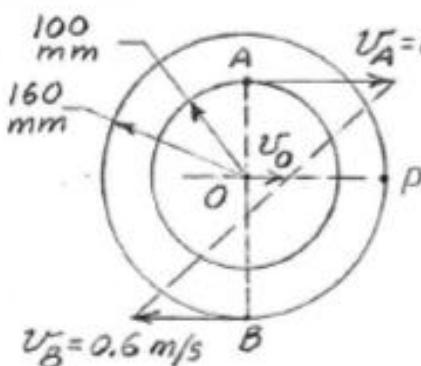
$$\omega_2 = 1.923 \text{ rad/s}$$

PROBLEM 5/75

Each of the sliding bars *A* and *B* engages its respective rim of the two riveted wheels without slipping. Determine the magnitude of the velocity of point *P* for the position shown.



5/75



$$\omega = \frac{v_A + v_B}{AB} = \frac{0.8 + 0.6}{0.26} = 5.38 \text{ rad/s}$$

$$v_O = v_A - A\bar{O}\omega \\ = 0.8 - 0.1(5.38) = 0.262 \text{ m/s}$$

$$v_P = v_O + v_{P/O}$$

$$v_{P/O} = \bar{P}\bar{O}\omega = 0.16(5.38) = 0.862 \text{ m/s}$$

$$v_P = \sqrt{v_O^2 + v_{P/O}^2} \\ = \sqrt{0.262^2 + 0.862^2} \\ = 0.900 \text{ m/s}$$

PROBLEM 5/84

The flywheel turns clockwise with a constant speed of 600 rev/min, and the connecting rod AB slides through the pivoted collar at C . For the position $\theta = 45^\circ$, determine the angular velocity ω_{AB} of AB by using the relative-velocity relations. (Suggestion: Choose a point D on AB coincident with C as a reference point whose direction of velocity is known.)

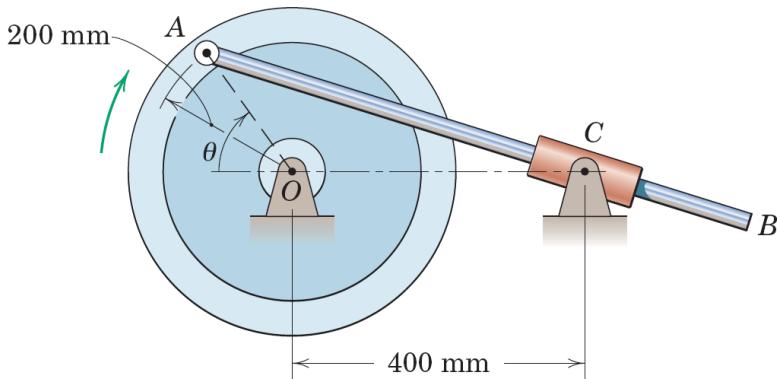


Diagram and calculations for Problem 5/84:

Given: Flywheel radius $OA = 0.2 \text{ m}$, Flywheel angular velocity $\omega = 600 \frac{\text{rev}}{\text{min}} = 20 \pi \frac{\text{rad}}{\text{sec}}$, Distance $OC = 0.4 \text{ m}$, Angle $\theta = 45^\circ$.

Find: Angular velocity ω_{AB} of the connecting rod AB .

1. Calculate the linear velocity v_A of point A:

$$v_A = r\omega = \frac{0.2 \cdot 600(2\pi)}{60} = 12.56 \text{ m/s}$$

2. Calculate the angle β between the radius OA and the velocity v_A :

$$\beta = \tan^{-1} \frac{0.2 \sin 45^\circ}{0.4 + 0.2 \cos 45^\circ} = 14.64^\circ$$

3. Calculate the relative velocity $v_{A/D}$ of point A relative to point D:

$$v_{A/D} = 12.56 \sin (45^\circ + 14.64^\circ) = 10.84 \text{ m/s}$$

4. Calculate the length AD of the connecting rod:

$$AD = \frac{0.2 \cos 45^\circ}{\sin 14.64^\circ} = 0.560 \text{ m}$$

5. Calculate the angular velocity ω_{AB} of the connecting rod:

$$\omega_{AB} = \frac{v_{A/D}}{AD} = \frac{10.84}{0.560} = 19.38 \text{ rad/sec CW}$$

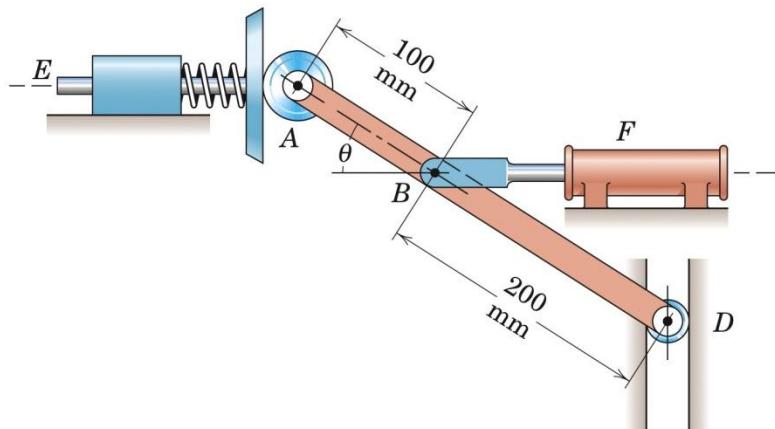
Diagram showing the velocity triangle for point A:

Velocity triangle for point A:

- Velocity v_A is perpendicular to the radius OA .
- Velocity v_D is horizontal to the right.
- Relative velocity $v_{A/D}$ is at an angle of $45^\circ + 14.64^\circ = 59.64^\circ$ above the horizontal.

PROBLEM 5/108

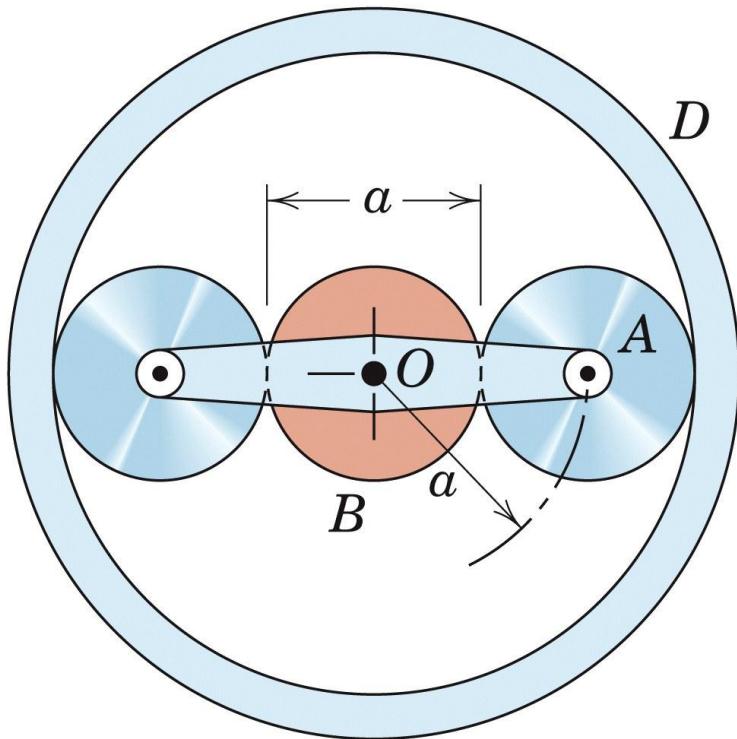
Horizontal oscillation of the spring-loaded plunger *E* is controlled by varying the air pressure in the horizontal pneumatic cylinder *F*. If the plunger has a velocity of 2 m/s to the right when $\theta = 30^\circ$, determine the downward velocity v_D of roller *D* in the vertical guide and find the angular velocity ω of *ABD* for this position.



$\bar{CB} = 0.1 \text{ m} = \bar{AB}, 2\beta + (180 - 60) = 180$
 $\beta = 30^\circ, \gamma = 30^\circ$
 $\bar{AC} = 2(0.1) \cos 30^\circ = 0.1732 \text{ m}$
 $v_A = \frac{2}{\cos 30^\circ} = 2.31 \text{ m/s}$
 $\omega = \frac{v_A}{AC} = \frac{2.31}{0.1732} = 13.33 \frac{\text{rad}}{\text{s}}$
 $v_D = \bar{CD}\omega = 0.2 \cos 30^\circ (13.33)$
 $= 2.31 \text{ m/s}$

PROBLEM 5/120

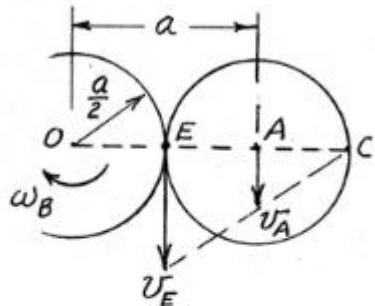
The shaft at O drives the arm OA at a clockwise speed of 90 rev/min about the fixed bearing at O . Use the method of the instantaneous center of zero velocity to determine the rotational speed of gear B (gear teeth not shown) if (a) ring gear D is fixed and (b) ring gear D rotates counterclockwise about O with a speed of 80 rev/min.



$$(a) \quad v_A = \omega_{OA} a$$

$$v_E = 2v_A = 2a\omega_{OA}$$

$$\omega_B = \frac{v_E}{a/2} = \frac{2a \omega_{0A}}{a/2} = 4(90) = 360 \text{ rev/min}$$

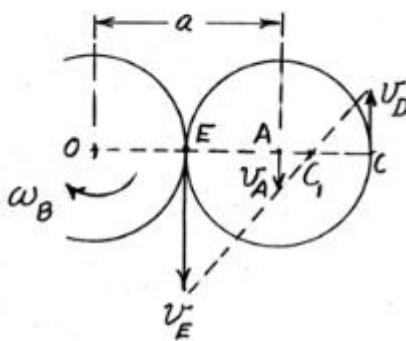


$$(b) \quad v_D = \bar{OC} \omega_D = \frac{3a}{2} \cdot 80 = 120a$$

$$V_A = \bar{OA} \omega_{OA} = 90 \Omega$$

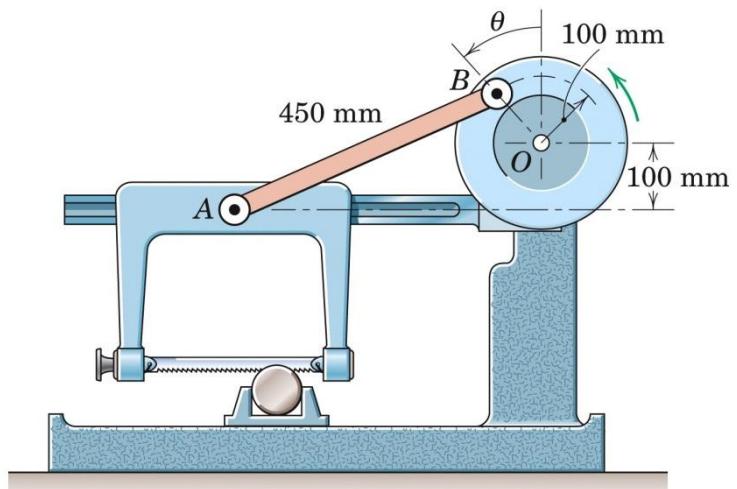
$$\frac{V_A + V_D}{a} = \frac{V_E - V_A}{a}, \quad V_E = V_D + 2V_A \\ = 300a$$

$$\omega_{OE} = \omega_B = \frac{\nu_E}{a/2} = \frac{300a}{a/2} = 600 \frac{\text{rev}}{\text{min}}$$



PROBLEM 5/153

The elements of a power hacksaw are shown in the figure. The saw blade is mounted in a frame which slides along the horizontal guide. If the motor turns the flywheel at a constant counterclockwise speed of 60 rev/min, determine the acceleration of the blade for the position where $\theta = 90^\circ$, and find the corresponding angular acceleration of the link AB.



5/153 C = instantaneous center of zero velocity for AB

$$\begin{aligned}
 C &= \sqrt{(450)^2 + (100)^2} = 439 \text{ mm} \\
 \omega_{AB} &= \frac{\omega_B}{CB} = \frac{\omega_B}{CB} \\
 &= \frac{100}{439} \frac{60(2\pi)}{60} = 1.432 \frac{\text{rad}}{\text{s}} \\
 \alpha_B &= (\alpha_B)_n = 100(2\pi)^2 = 3950 \text{ mm/s}^2 \\
 \alpha_A &= \alpha_B + (\alpha_{A/B})_n + (\alpha_{A/B})_t \\
 &= 3950 + 450(1.432)^2 = 923 \text{ mm/s}^2
 \end{aligned}$$

$$\beta = \tan^{-1} \frac{100}{439} = 12.82^\circ$$

$$\begin{aligned}
 \alpha_B &= 3950 \text{ mm/s}^2 \\
 \alpha_A &= \alpha_B + (\alpha_{A/B})_n + (\alpha_{A/B})_t \\
 &= 3950 + 923 \tan 12.82^\circ = 923 \frac{100}{439} = 210 \text{ mm/s}^2
 \end{aligned}$$

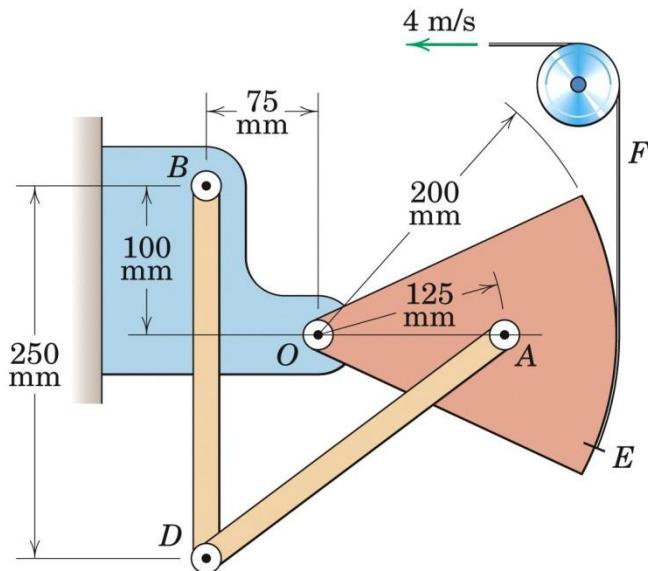
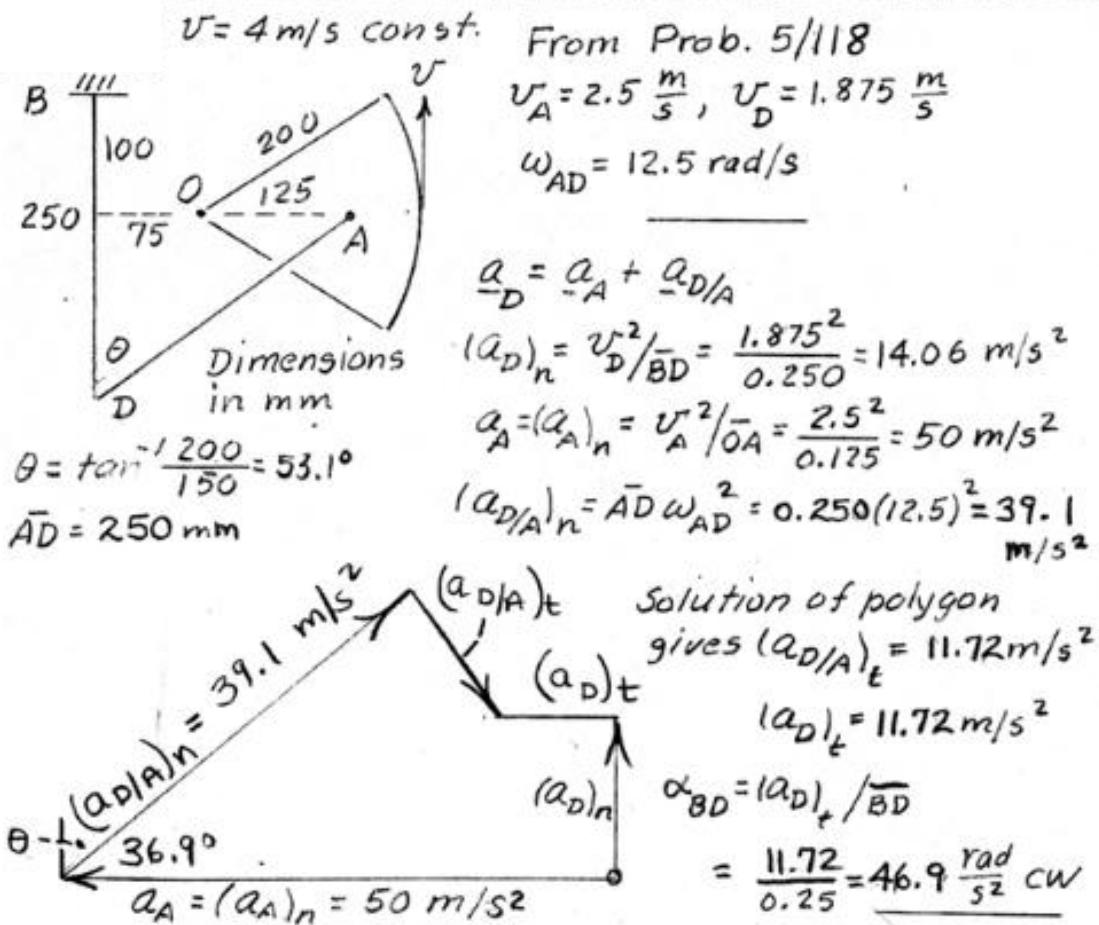
$$\alpha_{AB} = \frac{(\alpha_{A/B})_t}{AB} = \frac{210}{450} = 0.467 \text{ rad/s}^2 \text{ CCW}$$

$$\alpha_A = 3950 + 923 \cos 12.82^\circ + 210 \sin 12.82^\circ = 4890 \text{ mm/s}^2$$

$$\text{or } \alpha_A = 4.89 \text{ m/s}^2$$

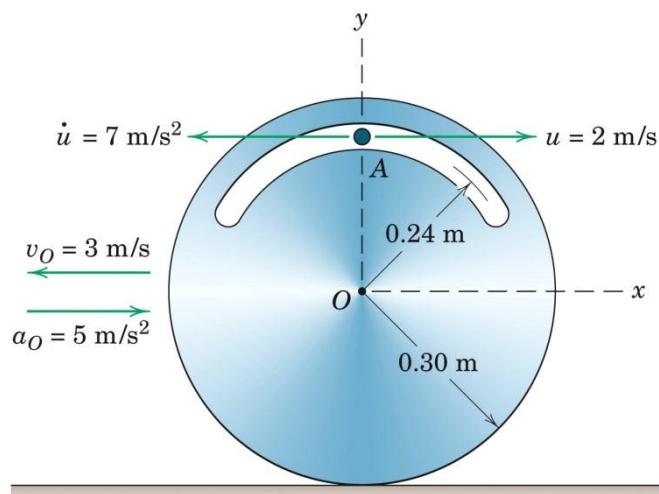
PROBLEM 5/154

The mechanism of Prob. 5/115 is repeated here where the flexible band F attached to the sector at E is given a constant velocity of 4 m/s as shown. For the instant when BD is perpendicular to OA , determine the angular acceleration of BD .



PROBLEM 5/162

The disk rolls without slipping on the horizontal surface, and at the instant represented, the center O has the velocity and acceleration shown in the figure. For this instant, the particle A has the indicated speed u and time-rate-of-change of speed \dot{u} , both relative to the disk. Determine the absolute velocity and acceleration of particle A .



For the coordinates $\begin{pmatrix} y \\ x \end{pmatrix}$, the no-slip constraints are $v_O = -r\omega$ & $a_O = -r\alpha$. So

$$\omega = -\frac{v_O}{r} = -\frac{3}{0.30} = 10 \text{ rad/s}$$

$$\alpha = -\frac{a_O}{r} = -\frac{5}{0.30} = -16.67 \text{ rad/s}^2$$

Use the frame Oxy as disk-fixed.

$$(5/12): \underline{v}_A = \underline{v}_O + \underline{\omega} \times \underline{r} + \underline{v}_{rel}$$

$$(5/14): \underline{a}_A = \underline{a}_O + \underline{\alpha} \times \underline{r} + \underline{\omega} \times (\underline{\omega} \times \underline{r}) + 2\underline{\omega} \times \underline{v}_{rel} + \underline{a}_{rel}$$

Ingredients: $\begin{cases} \underline{v}_O = -3i \text{ m/s} & r = 0.24j \text{ m} \\ \underline{a}_O = 5i \text{ m/s}^2 & \underline{v}_{rel} = 2i \text{ m/s} \\ \underline{\omega} = 10k \text{ rad/s} & \underline{a}_{rel} = -7i - \frac{2^2}{0.24}j \\ \underline{\alpha} = -16.67k \text{ rad/s}^2 & = -7i - 16.67j \text{ m/s}^2 \end{cases}$

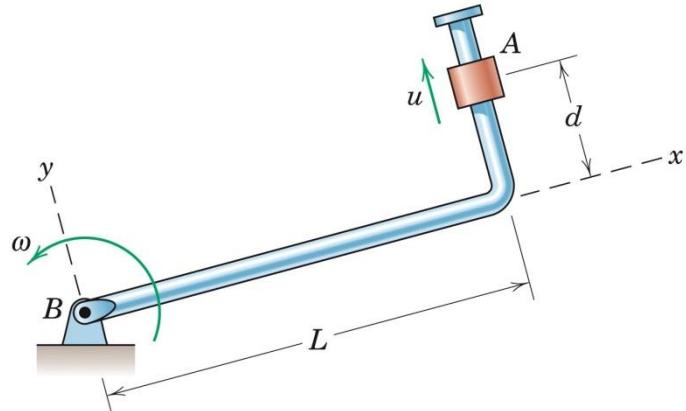
Substitute into (5/12) + (5/14) + simplify:

$$\underline{v}_A = -3.4i \text{ m/s}$$

$$\underline{a}_A = 2i - 0.667j \text{ m/s}^2$$

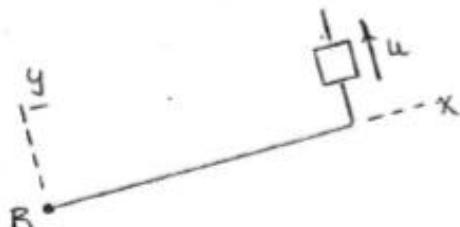
PROBLEM 5/165

The small cylinder A is sliding on the bent bar with speed u relative to the bar as shown. Simultaneously, the bar is rotating with angular velocity ω about the fixed pivot B . Take the x - y axes to be fixed to the bar and determine the Coriolis acceleration of the slider for the instant represented. Interpret your result.

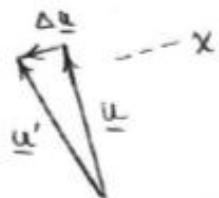


5/165

$$\begin{aligned} \underline{a}_{\text{cor}} &= 2 \underline{\omega} \times \underline{v}_{\text{rel}} \\ &= 2 \omega \underline{k} \times \underline{u}_j = -2 \omega \underline{u}_i \end{aligned}$$



Change-of-direction effect is in $-\underline{x}$ direction:



Change-of-magnitude effect is in $-\underline{x}$ direction:

